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Given a set of optical components for a camera, we may wish to stack them in various orders to
achieve effects outside the range of their individual capabilities. Assuming the physical aspects of
a given setup are possible, we would like to know its net optical properties. There are various ways
to go about this. Playing around with cardinal points and distances is a tedious exercise and prone
to error, while direct ray tracing requires numerical simulation. The cleanest and safest approach
is through matrix optics. Although we are limited by lack of knowledge of the internals of our
components, we can get surprisingly good results with the information we do have.

For the impatient reader, the results are summarized in section 8.

1. QUICK REVIEW OF MATRIX OPTICS

It is not our purpose to provide a detailed course on matrix optics, so we summarize the salient
features.

1.1. Assumptions. We make the following assumptions:

(1) Geometric Optics: We consider systems whose properties may be derived through tracing
rays, while ignoring the wave nature of light.

(2) Paraxial Approximation (First order optics): The source, optical components, and image
plane lie along and are perpendicular to an axis. Rays make a small angle to this axis. We
only consider terms linear in this angle.

(3) Gaussian Optics: All surfaces are flat or spherical in the region under consideration. We
assume that the point on any lens that a ray hits is at a small enough angle to the axis that
we need only consider linear or quadratic terms in it1. Note that aberrations are ignored,
although much of the internal complexity of a camera lens is designed to compensate for
them.

(4) Everything is rotationally symmetric about the optical axis.
(5) The ambient medium is air2, which we take to have index of refraction n = 1. The only

rays we need consider are through air because any propagation internal to a lens will already
have been accommodated in the corresponding matrix.

1This angle determines the point of intersection with the lens, not to be confused with the angle of the incoming ray relative
to the x-axis.
2Though the internals of a component may not have unit n, and the effective index of refraction for a composite system may
not be 1.
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1.2. An Important Optics Equation. In elementary optics we learn that, for any lens, the condition
to achieve focus is

(1)
1

f
=

1

s1
+

1

s2

where f is the focal length, s1 is the distance from the image to the lens and s2 is the distance from
the lens to the object. We assume s1 and s2 to be positive, though they can become negative if one
starts dealing with virtual images or negative focal lengths. As will be discussed, for a thick lens
s1 and s2 are measured to and from the respective principal planes. For a thin lens, those planes
coincide at the lens location.

1.3. Basic Idea of Matrix Optics. Matrix optics provides a simple means of calculating the effect
of successive components in an optical path. If we think of the x-axis as our center line, then each
component sits along it and perpendicular to it. Rays come in at a (small) angle from the left and
emerge on the right. The utility of matrix optics derives from our ability to consider each component
as a matrix and simply multiply them to get a composite matrix that represents the aggregate system.
The matrices themselves are transforms in a vector space3.

1.3.1. Ray Vector. Each light ray is traced from an object on the left to an image on the right.
Because of our assumptions, we need only consider the progress of a given ray in two dimensions.
At each point the ray is represented by two values

(
y
α

)

This vector represents the ray of light as it passes a given location x. The component y is the location
of the ray on the y-axis, while α is its angle to the x-axis. The sign of y is taken be positive if above
the x-axis and negative if below it. The sign of α is taken to be positive if the ray is moving up to
the right and negative if down to the right.

In describing locations on the x-axis, we refer to points and planes interchangeably where unam-
biguous. The latter are perpendicular to the axis.

1.3.2. Optical Component. In our terminology, an optical component is an interval on the x-axis
along with the exact configuration of glass and air that the ray would pass through in traversing
that interval. We treat this as a black box that can be moved around if needed, as long as the
relative positions of the internal elements relative to the boundary remain the same. For example,
component A could be defined as spanning the interval [x1, x2] with specific thin lenses located at
xa, xb ∈ [x1, x2]. That is, a ray would propagate from x1 to xa in air, then through the thin lens
at xa then between xa and xb in air, through the thin lens at xb, and then from xb to x2 in air. We
could move A to any position and it will span an interval of length x2 − x1 with lenses at distances
(xa − x1) and (xb − x1) relative to the new front point. Put simply, it can be moved as a unit.
However if the internal positions of the lenses change or we change the air intervals on either end
(thus increasing or decreasing the overall size) or add or subtract lenses, then the component itself
has changed. Note that a fixed length of air is considered an optical component from our standpoint.

3There are several ”matrix methods” in optics. What we refer to here are called ”ray transfer” or ”ABCD” matrices.
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As an aside, it is irrelevant whether we use open or closed intervals4. Items like thin lenses or single
surfaces with no extent can be included without problem.

1.3.3. Matrix M . An optical component5 A has a fixed matrix MA associated with it. The latter
describes the transformation of any ray that propagates through the component. If the component
spans the interval [x1, x2] then

(
y
α

)
x2

=M ·
(
y
α

)
x1

Note that we need not know effective lens positions or cardinal points or anything else. Even the
length of the component is irrelevant6.

1.3.4. Constraint on M . Any 2-dimensional matrix can be written

M =

(
A B
C D

)
However, there is a constraint on our optical matrices. When the ambient medium is the same on
both ends, conservation of energy dictates that

detM = 1

All the matrices must be unitary; therefore each has three degrees of freedom. From this point on,
all matrices are assumed to be unitary unless otherwise specified.

1.3.5. Units. It isn’t a problem that y and α have different units. We just need to make sure that
our matrices manage units accordingly. Specifically, if [L] represents a length unit and ’−’ denotes
a dimensionless quantity, our vector and matrix elements have the following units:

v :

(
[L]
−

)

M :

(
− [L]

[L−1] −

)

1.3.6. Alternate Convention. Some authors use an alternate convention, defining their ray vector as

(
α
y

)
In that case, we must swap the elements B and C in our matrix to get

4We’re not attempting to be mathematically rigorous.
5The component must satisfy out linearity assumptions, as stated earlier.
6It implicitly appears in M through whatever air intervals are included.
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(
α′

y′

)
x2

=

(
A C
B D

)
·
(
α
y

)
x1

1.4. Combining Matrices. If we consider a ray as passing the plane at x1 with value
(
y
α

)
x1

,

propagating through a sequence of n components, and passing the plane x2 with value
(
y
α

)
x2

, then

its transformation is given by

(
y
α

)
x2

=Mn · · ·M1

(
y
α

)
x1

where M1 · · ·Mn is the set of matrices associated with the components in the order they are tra-
versed. That is, M1 is the matrix of the component first encountered by the ray.

1.5. Object-Image Path. Most often, we consider a ray emerging from an object on the left, prop-
agating through a series of components, and converging to an image plane on the right. In this
case, the entire optical path is represented in the matrices. The latter must include the propagation
from the object to the first component and from the last to the image plane. This is useful when
determining the requirements for an image to be in focus.

1.6. Choice of Matrices. As discussed, a component represents a “black-box” that has a specific
length and configuration of internal air and glass. This is what the associated matrix represents.
When presented with an interval and a sequence of air and lenses, how do we define our components?
We may partition the interval from object to image in any way we choose. Our only constraint is
that every point be represented in one and only one component (and matrix).

Matrix multiplication is associative, and it is clear that this approach is consistent. We may combine
components or separate them into sub-components at will as long as the result is a proper partition
of the optical path.

What determines our choice of partition? There are two factors:

(1) Certain matrices are easy to derive. Specifically, we easily can deal with thin lenses, sur-
faces, air-gaps, and thick-lenses.

(2) There may be a natural breakdown. For example, we shall deduce the matrices for various
camera components. Each has a specific boundary and unknown internal structure. The
former may change extent through focusing or zooming, but at any given setting is of fixed
extent.

In most cases, there is an obviously preferable breakdown of the path into intervals.

1.7. Sign Conventions for Distance. The sign conventions regarding distances can get fairly in-
volved (particularly when virtual images come into play), so we keep direction and length separate
to simplify things. Unless otherwise stated we mean a positive quantity when we refer to a distance,
and our use of signs reflects this.
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1.8. Reversed Matrix. To find the matrix for a reversed component, we note that it satisfies:

(
y′

α′

)
=M

(
y
α

)
(
y
−α

)
=Mrev

(
y′

−α′
)

The minus signs arise from the reversal of direction of the rays; the entry and exit points simply
exchange places but the angle reverses itself when considering the ray as entering the lens instead of
exiting.

Recall that for a unitary 2× 2 matrix M , the inverse is7.

M−1 =

(
D −B
−C A

)
Defining a non-unitary angle-reversal matrix

R =

(
1 0
0 −1

)
we can rewrite our equation as

RMrevRM = I

Although R isn’t unitary, the presence of two R’s restores unitarity to the equation. This can be
rewritten (noting that R−1 = R) as

Mrev = RM−1R

which yields

Mrev =

(
D B
C A

)
Reversing a component results in a simple exchange of A and D in the corresponding matrix.

1.9. Powers and Focal Lengths. For notational simplicity, we use powers instead of focal lengths
in the matrices. The “power” of a lens is defined as8

φ =
1

f

7For a general 2× 2 matrix it is this divided by detM .
8Actually, it is n

f
but in our case n = 1.
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1.10. Thin Lens Matrix. A thin lens embodies the refractive effect of two surfaces with no thick-
ness in between. That is, the effect on the ray is as if it crossed each of those surfaces without
spending any time inside the glass. As a result, the ray is bent but not displaced.

The associated matrix is

Mthin =

(
1 0
−φ 1

)

where φ = 1
f is the power of the lens. f can be derived from properties of the two surfaces using

the lensmakers equation, which we won’t discuss here.

1.11. Space Matrix. Every piece of the ray’s path must be represented in some matrix. This means
we must include a matrix for any space between components. Note that this “space” corresponds to
the interval between the end of one component and the beginning of another

Mspace =

(
1 t
0 1

)

where t is the relevant distance along the x-axis. A space matrix displaces but does not bend the ray.

1.12. Thick Lens Matrix. A thick lens has two refractive surfaces with glass of nonzero thickness
in between. Unlike with the thin lens, we must account for internal propagation. All real lenses
are thick lenses, though we approximate some as thin for simplicity. If the powers of the individual
surfaces are φ1 and φ2, the distance between their vertices is t, and the index of refraction of the
glass is n, then (defining the effective length τ = t

n ), the appropriate matrix is

Mthick =

(
1− φ1τ τ

φ1φ2τ − φ1 − φ2 1− φ2τ

)

where φ1 and φ2 are the effective powers of the two surfaces and τ is the distance between the
vertices. A possible meaning will be introduced shortly.

It is not hard to demonstrate that the focal length of a thick lens in air is the same on both sides and
has the value

f =
1

φ1 + φ2 − φ1φ2τ

However, it is measured from the Principal Planes rather than any common center point.

1.12.1. Degrees of Freedom. In first order optics, the properties of a thick lens are completely de-
termined by three parameters: φ1, φ2, and τ . This is the same number of degrees of freedom as in a
2x2 unitary matrix. We may interpret every such matrix as an effective thick lens, though the utility
of doing so depends on the the context. This one-to-one correspondence is easy to construct from
the matrix above, and we will make use of it shortly.
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1.12.2. Focal Length of a Matrix. We shortly will derive the optical properties of the effective thick
lens associated with a matrix. For now, we simply observe that its focal length in air is

feff =
−1
C

1.12.3. Important Points and Planes. There are a number of important planes (or points on the x-
axis) associated with a thick lens. Their locations for the effective thick lens of a system are of
general interest, and provide insight into its optical behavior.

• O and I are the object and image points.
• F andR are the front and rear physical boundaries of the interval represented by the matrix.

They also are known as the vertices.
• Pf and Pr are the principal planes.
• Ff and Fr are the focal planes.

The points Ff , Fr, Pf , and Pr are four of the six ”Cardinal Points” of the lens9.

1.12.4. Vertices. The vertices of a thick lens are the points at which the outer surfaces intersect the
x-axis. They are the extent of the actual glass. For an effective thick lens, the vertices correspond to
the endpoints of the interval represented by the relevant matrix. For a thin lens the vertices coincide.

1.12.5. Principal Planes. The effect of a thick lens on light can be thought of as that of a thin lens
of the same focal length but with a gap in space. This defines the principal planes, Pf and Pr. Let
us denote the effective thin lens as T . Light acts as if it enters T at the plane Pf and emerges with
the same y′ and α′ as it would were T a true thin lens – but instead of doing so at Pf , it does so at
Pr. That is, the ray magically appears at Pr. Equivalently, we can treat the optical path as if it had a
thin lens at Pf and the interval [Pf , Pr] were removed. For a thin lens, the Principal Planes coincide
with the vertex.

1.12.6. Focal Planes. In air, the focal length is the same on each side of a lens. However, it is
measured from the principal planes. That is, the focal planes are at Pf − f and Pr + f . Likewise,
equation 1 holds, but with s1 and s2 measured from the principal planes to the sensor and object. As
mentioned, the region [Pf , Pr] is treated as if it does not exist. For a thin lens, the Focal Planes are
symmetrically located around the vertex.

1.13. Two Thin Lenses a Thick Lens Make. It is fairly easy to see that two thin lenses with a
separation of τ are equivalent to a thick lens. Specifically, if

Mthin1 =

(
1 0
−φ1 1

)
Mthin2 =

(
1 0
−φ2 1

)
Mgap =

(
1 τ
0 1

)
Then

9The other two are called Nodal Points and don’t concern us here.
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Mthin2MgapMthin1 =

(
1− φ1τ τ

φ1φ2τ − φ1 − φ2 1− φ2τ

)

This is just the matrix for a thick lens, and provides an easy interpretation of the latter’s elements.
Specifically, we may read off C to get the usual equation for combining thin lens focal lengths:

1

f
=

1

f1
+

1

f2
− τ

f1f2

Conversely, we may regard a thick lens as two thin lenses with a gap. Given a thick lens

Mthick =

(
A B
C D

)

we extract

• φ1 = 1−A
B

• φ2 = 1−D
B

• τ = B

It is easy to see that the thin lenses do not sit at the principal planes of the corresponding thick
lens. Perhaps it is less obvious that they do not sit at the vertices either. This is because of the
internal index of refraction of a thick lens. When discussing degrees of freedom, we noted that φ1,
φ2, and τ completely determine the optical behavior of the lens. This is true as far as ray-tracing
goes, and there is indeed a one-to-one correspondence between optical matrices and sets of these
three parameters. If we start asking questions about other optical quantities which do not directly
affect the behavior of rays, then we may require more information. For example, many internal
configurations of optical components yield the same matrix for a given interval. The resulting focal
length and principal planes must be the same, but the vertices need not. They represent extraneous
information about the internal structure. If we also vary the interval covered by the matrix, as we
must when considering a thick lens comparison, the principal planes change as well10. Consider a
thick lens with internal index of refraction n. We did not derive the thick lens matrix in section 1.12,
but we noted that τ = t

n . Because the lens is made of glass, the distance is increased by a factor of n.
This does not affect the optical properties of the component as long as the outside medium remains
air. However, when attempting to compare a thick lens with two thin lenses the distinction becomes
important. Two thin lenses separated by distance τ are equivalent to a thick lens of any index of
refraction n with the same matrix elements and a distance between vertices of nτ . As n typically
is in the range of 1.5 for glass, the difference can be quite significant. Note that the comparison
involves the same matrix but different intervals. If we require that the interval covered by the matrix
be constant then we must add air gaps outside the thin lenses and adjust our thick lens accordingly.

1.14. Two Thick Lenses a Thick Lens Make, BUT... Similarly, we could combine two thick
lenses with a gap between them. The resulting calculation is rather cumbersome and tangential
to our current discussion. We simply note that the problems with comparison that arise from the
case of two thin lenses are significantly uglier.

10Obviously, the focal length does not.
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2. CAMERA COMPONENT↔ MATRIX

2.1. Optical Parameters. Our purpose is to determine the optical properties of a stack of camera
components. Let us begin by defining various optical parameters.

2.1.1. Front and Rear of Camera Lens. As a point of terminology, the ”front” of the lens is the
business end while the ”rear” is that which ordinarily connects to the camera. This is consistent with
our use of ”front” and ”rear” in reference to principal planes.

2.1.2. δ - Distance from Sensor to Rear of Lens. For many purposes, we require knowledge of the
distance between the camera sensor or film and the rear of an attached lens. We denote this δ. It is
constant within a camera family, and all compatible lenses are designed to accommodate it. As δ is
important for various practical applications, it is reported by camera manufacturers. The two most
common values are:

• Canon EOS: δ = 44mm.
• Nikon F: δ = 46.5mm.

As a side note, most cameras indicate the position of the image plane with a marking on the camera
body.

2.1.3. Image Orientation. Though not an optical parameter per se, the image orientation is of im-
portance. The image on the sensor plane is inverted. The camera compensates for this through the
orientation and interpretation of the sensor, resulting in an upright final image. For optical calcula-
tions we must remain cognizant of the inversion.

2.1.4. ws - Sensor Width. Although unnecessary for most optical calculations, we sometimes need
to know the size of the sensor. For example, in deducing various optical parameters for a lens from
empirical measurements the sensor size comes into play. Also it allows us to compute the field of
view and adjust for perceived focal length and aperture. Unless otherwise stated, we take the sensor
width to be measured horizontally. The sensor dimensions are constant within a class of camera.
For example, all Canon EOS cameras have a specific δ but the ws differs between their full-frame
and APS-C cameras. Some common values are:

• Full-frame (or 35mm): 36 x 24 mm.
• Canon APS-C: 22.2 x 14.8 mm.
• Nikon APS-C: 23.6 x 15.7 mm.
• Four-Thirds: 17.3 x 13 mm.

2.1.5. L - Length of System. For certain purposes11, we require knowledge of the physical length of
a lens or stack. We define this to be L, and it is measured from the rear seal with the camera to the
frontmost point. A few words of caution in its use:

• It can change as we adjust the focus or zoom setting of a lens.
• The reported value usually is the maximum across focus/zoom settings.
• When using a reported value it is important to know whether it is measured from the end

of the canister, the frontmost vertex of the glass, or the point where a filter would sit. Most
likely it is the last. It is okay for us to use any choice as long as we are consistent. We
simply must amend our calculations accordingly.

11Such as the determination of cardinal points, or conversions between various object distance conventions.
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• It is best to measure L while the lens is attached to the camera. Otherwise the protruding
bayonet mount may make it difficult to locate the appropriate rear point.

• When measuring a lens, we must make sure that any filters or attachments are removed.
Many photographers use a protective glass or UV filter, and this must not be included in the
length.

2.1.6. dfo, dso, d̃fo, d̃so - Distance to Object. The minimum distance to an object is a quantity
that often is available for camera lenses. It easily may be measured as well, and is of interest as
a constraint in macrophography. First, let us clarify what it means. As embodied in equation 1,
associated with any object distance s2 from the front principal plane of a system there is an image
at some distance s1 from the rear principal plane. However, s1 and s2 are not of direct interest to us
because we rarely know the location of the principal planes a priori. Nor are they useful reference
points for a comparison of different systems. Rather, there are several possible definitions that may
be of use, only three of which make sense for comparison across systems. We could measure:

(1) From the front of the physical unit. If the unit changes size, the reference plane will move
with the front point.

(2) From the rear of the lens unit (that is, the seal with the camera).
(3) From the image plane, the location of the sensor.

The latter two choices differ by δ, which is constant for a camera family. From an optics standpoint,
the rear of the lens unit isn’t special. We stick with the first and third choices, and define two corre-
sponding distances. In certain cases, such as focal play or zooming, these quantities are variable12,
and it is useful to consider the minimum focal distance across settings. This is a property of the lens
and plays a significant role in our analysis. We define the following:

• dfo is the distance from the frontmost physical point in the system to the object.
• dso is the distance from the sensor plane to the object.
• d̃fo is the minimum value of dfo for which focus may be achieved when there is a given

range of settings under consideration.
• d̃so is the minimum value of dso for which focus may be achieved when there is a given

range of settings under consideration.

If the system length at the relevant settings is L, then dso = dfo + L + δ. Note that L may vary
as we focus, and in theory the same does not hold for d̃so and d̃fo. The minima may be at different
values of L.

As photographers we generally care about d̃fo as it determines how close we can get to a subject
for macrophotography. However, the reported minimum object distance for a lens usually is d̃so.
Thus when Canon tells us that their 70-200mm f/4L has a minimum object distance of 1.2m, that is
measured from the sensor plane.

Note that from a matrix standpoint, we may use either method as long as the matrices are chosen
accordingly. Also note that some values of dfo or dso may not be accessible because the associated
s1 may lay outside the range of focal play. This is what defines d̃fo and d̃so. However when
considering a stack of components, we must allow all possible values (even virtual objects) because
the overall combination may result in a reasonable image even if the individual lenses do not. For
example, it often makes sense to reverse one lens onto another well within the d̃so of either.

12Strictly speaking, our definition of ”component” corresponds to a specific choice of focus and zoom. We really must
consider a set of components when we speak of a range. However we will be cavalier in our terminology, and the context
will be clear.
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2.1.7. mo, mu - Magnification. One of the most important optical parameters is the magnification.
A major purpose of stacking is to achieve very high magnifications. While the magnification is a
function of object distance (however we measure it), in most cases we only care about the maximum
magnification. Unless otherwise specified, this is what we refer to.

Before proceeding, we should briefly mention one possible point of confusion. The term ”mag-
nification” can be used in a number of ways. First, let us list some common ways in which it is
reported:

• n : m means that the image is n
m times life-size. Usually, either n or m is chosen to be 1.

Thus, 5 : 1 means 5 times life-size (a macro shot), while 1 : 4 means a quarter of life-size.
• n or nX means n times life-size. Thus 5 : 1 and 1 : 0.2 and 5X all mean the same thing.

The differences in meaning arise from the definition of ”life-size”. This may be an absolute reference
size, or something related to the camera. The two most common definitions are:

• Literal: The image on the sensor or film is n times larger than the corresponding object in
life. Thus, a 1 inch wide object at 0.5 magnification would occupy 0.5 inches of the sensor.
Note that this does not depend on the size of the sensor. Within a sign, it is the mathematical
magnification m = y′

y that appears in calculations.
• Print: Often, a 6”x4” print is taken as a fixed reference size. At 2:1 magnification, a 1 inch

wide object would appear 2 inches wide on the print. It thus must consume 1
3 of the width

of the sensor or film from which the print is produced.

The translation between the two definitions depends on the size of the sensor. Denoting the sensor
width ws, let us define η to be the conversion factor η = ws

152.4 for a 6”x4” reference print. Two
common values are13:

• Full-frame 35mm camera: ws = 36 and η = 0.23622.
• APS-C 1.6X cropped sensor camera: ws = 22.2 and η = 0.14566.

To obtain the print magnification, we divide the literal magnification by η. For example, a 0.4X
literal magnification corresponds to a 1.7:1 print magnification if using a full-frame sensor or a
2.75:1 print magnification if using 1.6X cropped sensor14. Similarly, Canon quotes a 5x (or 5:1)
magnification for their MP-E65 lens. This too is relative to sensor size (it assumes full-frame), so it
translates to 21:1 in print terms.

For our purposes, all magnifications will be literal within a sign. The latter bears some consideration.
A camera lens produces an inverted image on the focal plane. Sometimes we wish to account for
this and sometimes we do not. Thus we define two quantities (both literal magnifications):

• mo: The optical magnification. It is the quantity that appears in calculations and is negative
for a camera lens. It is defined as mo =

yi
yo

where yi and yo are the ray heights at the object
and image planes. Equivalently, mo =

s1
s2

.
• mu: This is the magnification as seen in a photo. It is defined as mu = −mo to account for

the internal inversion within the camera. It almost always is positive for a camera lens, but
could prove negative for a stack of components (meaning that mo > 0 and the final image
is upside-down). Both the reported and relevant deduced maximum magnifications are mu

values.

13For our purposes, we ignore any difference in aspect ratio between the sensor and the print.
14This is larger not because there is more object on the sensor, but rather less sensor converting to the same print size.
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When considering focal or zoom ranges, both mu and mo are taken to be extreme values unless
otherwise specified. Note that these need not be obtained at the minimum object distance.

3. MATRIX→ LENS

Though it may not always be useful to do so, we can extract the optical parameters of the effective
thick lens asssociated with an arbitrary optical matrix. We assume knowledge of δ and ws. Let us
suppose that we are handed a matrix

(
A B
C D

)
with detM = 1.

3.1. The Interval Associated withM . Note thatM isn’t associated with an interval per-se, even if
the component matrices used to construct it were deduced from specific intervals. A given M could
correspond to any interval. This carries two degrees of freedom. First there is the location of the
interval, a degree of freedom in the definition of “component” as well. Second there is the length
of the interval. Though the vertex locations relative to their neighboring principal planes are fixed,
the distance between the latter is not. Recall that it is invisible from a physical standpoint. Without
knowledge of L, we cannot deduce it.

Therefore, in deriving optical parameters the placement of the effective lens associated with a matrix
is of importance. In our case, we wish to consider the matrix for a stack of components. We therefore
choose the rear vertex to be at the seal with the camera and the front vertex to be a distance dfo from
the object. Note that there is a fixed value of dfo in this approach. To defined d̃fo we need a
range. This corresponds to the play in settings (focal or zoom) of all the components in the stack,
which in turn is associated with a range of matrices – though we sometimes can make simplifying
assumptions. We will discuss this later. For now, we note that a single matrix M corresponds to a
single object distance dfo when we lock the image plane at δ behind the rear vertex of the unit. Note
that if we wish for dso instead of dfo we need to know L as well.

3.2. f - The focal length. In air this is the same on both sides, and is measured from the principal
planes. It can be read off of the matrix as

f = − 1

C

3.3. dfo - Finite case. As mentioned, we ignore focal play and assume a fixed object distance dfo.
Let us first assume that dfo is finite and determine both it and mo from a given matrix.

Our optical path consists of light from the object traveling to the front of the lens, through the lens,
and then from the rear of the lens to the sensor. The corresponding matrices are

Mtosensor =

(
1 δ
0 1

)
Mlens =

(
A B
C D

)
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Mfromobject =

(
1 dfo
0 1

)
and the ray transformation is given by

(
y′

α

)
=MtosensorMlensMfromobj

(
y
α

)
A simple calculation yields

y′ = y(A+ δC) + α(dfoA+B + δ(dfoC +D))

α′ = y · C + α(dfoC +D)

To achieve focus, all rays from a fixed y on the object must converge to a fixed y′ on the sensor. So,
we need y′ to be independent of α. This means

dfoA+B + δ(dfoC +D) = 0

which yields

dfo = −
(B + δD

A+ δC

)
3.4. mo and mu at finite distance dfo. Following our calculation of dfo, we immediately can
compute mo =

y′

y at that object distance:

mo =
(
A+ δC

)
.

Similarly,

mu = −
(
A+ δC

)
.

3.5. Deferred - Infinite dfo. We will return to the case of infinite object distance in section 4.4.
This limit is best introduced from the other direction, first computing the matrix associated with the
lens. For now we simply note that, as expected from the finite result, if A + δC = 0 the inferred
lens should have infinite dfo (and dso).

3.6. Thick Lens Locations from Matrix. If we are given a matrix M and the length L of the
interval associated with it, we may compute the locations of various planes in the corresponding
effective thick lens. Note that L for a stack is simply the sum of the lengths of the underlying
components.

• Image Sensor: We define this to be xI = δ. This places our origin at the rear of the physical
system.

14 of 28



Matrix Optics of Camera Lenses Kenneth Halpern

• Rear of Physical Unit (rear vertex of effective thick lens): xvr = 0 by choice.
• Front of Physical Unit (front vertex of effective thick lens): xvf = −L.
• Object: The object is located at xo = −dfo − L =

[
B+δD
A+δC

]
− L.

• Rear Principal Plane: xpr = 1−A
C .

• Front Principal Plane: xpf = −L− 1−D
C .

• Rear Focal Point: xfr = −A
C .

• Front Focal Point: xff = −L+ D
C .

The relevant distances are:

• Distance from sensor to rear principal plane: s1 = δ +
(
A−1
C

)
• Distance from second principal plane to object: s2 = dfo +

(
D−1
C

)
= 1−A−δC

C(A+δC) .
• Distance between principal planes: L+

(
2−A−D

C

)
4. LENS→ MATRIX

4.1. Obtaining the Optical Parameters. To determine the optical characteristics of a stack of
photographic equipment, we first must obtain the matrices associated with the components. Un-
fortunately, manufacturers do not provide such information directly. However it generally can be
deduced from the parameters they do provide and/or some simple measurements. All lenses list f
on their canister, and many include dso as well.

For Canon, a list currently can be had here (though it is best to use the parameters listed in each lens’
manual). ’’http://www.usa.canon.com/app/pdf/lens/EFLensChart.pdf’’

An unofficial set of Nikon data can be found here: ’’http://grwsystems.net/Nikon/
index.html’’

As before, let us first consider a lens with a specific focal plane (i.e. no focal play).

4.2. Finite Distance, Using mu, d̃so, L, and f . The parameters that are easiest to obtain are the
focal length f , maximum upright magnificationmu, and minimum object distance (from the sensor)
d̃so at which focus can be achieved. While it is theoretically possible15 that a complex lens attains
the maximum magnification for some dso > d̃so, it is unlikely and we assume that the two coincide.
We also assume that d̃fo and d̃so coincide, though they too could occur at different lens settings16.
Because d̃so is reported, we need the length of the unit L. We assume the reported L is at d̃so. In
summary, we assume that the maximum unit size, the minimum object distances (from the sensor
and from the front) and the maximum magnification all coincide. In the rare case where a lens is not
maximally extended at near focus, it may be necessary to compensate by measuring the difference.

From these parameters and the requirement that detM = 1, we can deduce the matrix M for the
lens. Specifically, we assume knowledge of the parameters f , L, d̃so, and mu, and that d̃fo =

d̃so − L− δ and mu coincides with the stated d̃so. Recall that mo = −mu.

4.2.1. Matrix in terms of f , d̃fo, and mu. The calculation is exactly the inverse of that performed
in section 3.3. Because that calculation was performed in terms of f , d̃fo, and mo, let us first state
the results using these.

15For example, if the principal planes shift in a weird way inside the canister.
16For example, if L changes while focusing or zooming.
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(2)

A =
δ

f
+mo

B = −mo · d̃fo −
δ

mo
− δd̃fo

f

C = − 1

f

D =
d̃fo
f

+
1

mo

Or as a matrix:

M =

(
δ
f +mo [−mo · d̃fo − δ

mo
− δd̃fo

f ]

− 1
f

d̃fo
f + 1

mo

)

4.2.2. Matrix in terms of f , d̃so, L, and mu. We also can express the results in terms of the exact
quantities we are given:

(3)

A =
δ

f
−mu

B = mu · (d̃so − L− δ) +
δ

mu
− δ(d̃so − L− δ)

f

C = − 1

f

D =
(d̃so − L− δ)

f
− 1

mu

Or as a matrix:

M =

(
δ
f −mu [mu · (d̃so − L− δ) + δ

mu
− δ(d̃so−L−δ)

f ]

− 1
f

(d̃so−L−δ)
f − 1

mu

)

4.3. Infinite Distance. When the object distance is infinite, the problem is a little more challenging.

For infinite or very large do, the linear magnification is not useful17. A more salient characteristic
is the field of view, which we denote γ. This is the physical angle subtended by an object that
completely fills the image18. The rays from a distant object are parallel at first order, and the image
forms on the rear focal plane.

17For afocal systems such as telescopes, we instead compare the relative widths of parallel entry and exit beams to obtain an
angular magnification.
18Horizontally, vertically, or diagonally as specified.
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4.3.1. Field of View. To compute the field of view we must know the physical width of the sensor
in the direction of the angle we are measuring. Let us suppose it to be ws. Then

γ = 2tan−1
ws
2f

For ws << f (which is not embodied in our other small-angle assumptions), this may be approxi-
mated as

γ =
ws
f

4.3.2. Degrees of Freedom. Unfortunately, γ is a function of f and won’t serve as a replacement for
m as far as information content. We know f , but the object distance is infinite and the magnification
is zero. Even with the unitarity condition, we can lock down only 3 elements in M . An additional
assumption or measurement is needed.

We take the simplest route and assume that the effective lens moves in tandem to focus. That is,
we assume that the process of focusing involves shifting an effective lens within the canister. Most
likely, the focusing mechanism is more complex and involves changes to all three of A, B, and D.
However, in the absence of additional information this is the most reasonable choice.

To focus the effective lens, we shift its distance as a whole from the sensor19. Because the object
distance will become infinite, it is irrelevant whether we use dfo or dso. We arbitrarily choose dfo
here.

Our starting point is a matrix derived from the lens at finite object distance. This could be any object
distance dfo at which we know mu, but we are most likely to have that information at the minimum
object distance. Given a matrix

Mfin =

(
A B
C D

)

at that object distance, we simply reduce the gap on one side and increase it on the other. Let us do
so by some arbitrary amount t.

M ′ =

(
1 t
0 1

)(
A B
C D

)(
1 −t
0 1

)

4.3.3. Minf in terms of Mfin. Expanding M ′, we get

M ′ =

(
A+ tC [B − tA+ tD − t2C]
C D − tC

)

Denoting by dfo and mu the object distance and magnification associated with Mfin, and by d′fo
and m′u the object distance and magnification associated with M ′, it is not hard to see that

19Consequently, the principal planes move in parallel.
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m′u = mu − tC

f ′ = f

d′fo =
tmu − t2C + domu + tD

mu − tC

To achieve focus at dfo → ∞, we require that t → mu
C = −(δ + A

C ). Substituting this in, we see
that

Minf =

(
−δC

[
B − (A+δC)(D+δC)

C

]
C D +A+ δC

)

4.3.4. Minf in terms of f and mu at some dfo. Alternately, if we wish to cast this in terms of f
and the value of mu at some finite dfo, we could use the results of section 4.2 to get

(4) Minf =

(
δ
f [f +muδ +

δ
mu
− δdfo

f ]
−1
f

dfo
f −mu − 1

mu

)

4.3.5. Minf in terms of f , mu, L, and d̃so. Lastly, if we wish to use the reported values for the near
focus end of a lens, We get

(5) Minf =

(
δ
f [f +muδ +

δ
mu
− δ(d̃so−L−δ)

f ]
−1
f

(d̃so−L−δ)
f −mu − 1

mu

)

4.3.6. Focal Play. If mu is the maximum magnification, assumed to be attained at nearest focus
(using either d̃fo or d̃so), then the total focal play can be computed as

tplay = muf

This assumes that the lens can achieve focus for an infinitely distant object. That usually is the case
with ordinary lenses, but not macro lenses. Also, if our matrix is that of a composite system then the
associated effective lens may have a finite maximum object distance even if the component lenses
do not. In those cases, we must explicitly determine the focal play from the matrices at the minimum
and maximum object distances. As discussed in section 3.6, The motion in the rear focal plane is
given by |A2−A1

C |. This gives us a focal play of

tplay = |(m2 −m1)f |

where m1 and m2 are the magnifications at the minimum and maximum object distances (either mo

or mu will do).
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4.4. Matrix→ Lens: Infinite dfo. We now return to the calculation deferred from section 3. If in
computing the values of f , dfo, and mu associated with a system’s matrix M , we run into divergent
values, we may need to check for an infinite object distance. If A = −δC then the matrix is given
by equation 5. If divergent and not consistent with that form then we may not be able to assume
parallel focal motion and another assumption (or measurement) is needed.

As dfo is infinite and mu is 0, the only quantities we need to extract are f and γ. These are easy to
obtain:

f = − 1

C

γ =
ws
f

4.5. Aside: Principal Planes of a Camera Lens. Where do the principal planes sit for a real
camera lens? Often, one of the principal planes is near the front end of the lens but we cannot be
certain of this. As a simple example, consider an actual thin lens in a 172mm long canister with a
focal length of 200mm and a distance from the rear to the sensor of 44mm. From equation 1, we
can figure out the object distance s2 as a function of the lens location in the canister. At distance x
from the rear of the canister, s1 = 44+ x. As s1 varies from 44 to 216, s2 goes from -56 to −∞ (at
s1 = 200) and then immediately jumps to positive infinity and proceeds down to 2632 at s1 = 216.
So, an infinite object distance is obtained when x = 156 and s1 = 200. Any value of s2 that leads
to a position within or behind the canister is not useful. The minimum object distance of 2632 is
achieved at s1 = 216 and x = 172.

In a real lens system it is possible for the effective x to sit outside of the canister. Moreover the focal
play is restricted. As a more realistic example, let us consider an effective thick lens for the Canon
70-200mm zoom lens at 200mm focal length. We know that dso = 1200 and m = 0.21 from the
specifications. As before, the canister has length l = 172. Consider the space from the sensor to the
object to consist of three regions: s1 is the distance from the sensor to the rear principal plane, s2 is
the distance from the front principal plane to the object, and b is the distance between the principal
planes. We know that mu = s1

s2
, which implies that s1 = mu · s2. From equation 1, we have that

f = mu·s2
1+mu

. From these, we obtain

s1 = (1 +mu)f = 242

s2 = (1 +
1

mu
)f = 1152.38

The total distance from sensor to object is dso = 1200.

From this we see that

b = dso − s1 − s2 = −194

The principal planes are reversed. This is surprising, but makes sense. In order to have a compact
telephoto lens with a short minimum object distance, the rear principal plane must sit forward of the
front principal plane. Specifically, the rear principal plane is 252mm in front of the sensor, while the
front principal plane is 48mm in front of the sensor.
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At infinity focus, the rear principal plane obviously is 200mm in front of the sensor and the front
principal plane 6mm in front of the sensor. This assumes parallel motion of the planes (which very
well may be wrong for a lens designed this way). The focal play is 42mm. That is, a range of 42mm
in the position of the effective lens allows focusing over a range from dso = 1200mm. . .∞.

5. OTHER COMPONENTS

5.1. Telextender. A telextender is a device which multiplies the focal length of any lens by a con-
stant. It is placed between the lens and the camera. Denoting the multiplier x, we have fnew = xf .
For example, for a 1.4X telextender, x = 1.4.

Suppose our lens (which itself could be an effective lens for some system) has matrix

Mlens =

(
A B
C D

)

Let us construct a new matrix

MTE =

(
A′ B′

C ′ D′

)

such that M ′′ = MTEMlens has focal length xf for any f . It is not obvious that such a matrix
exists, but we will see that it does.

Multiplying, we get D′′ = AC ′ + CD′. We therefore require that AC ′ + CD′ = C
x and

C ′ = 0

D′ =
1

x

We next consider the condition that detM ′′ = 1. This requires that (AA′ + CB′)Dx − (BA′ +

DB′)Cx = 1 which means that

A′ = x

This leaves B′ as a degree of freedom. However, there is one obvious choice. Given the current
values, we can compute the optical parameters

(m′u) = Ax+ CB′ + δxC

d′fo = −
[Bx+DB′ + δD

x

Ax+ CB′ + δC
x

]

f ′ = − x
C

= fx
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Ideally, we would like m′u and d′fo to be affected in a uniform way across lenses20. If we require
that B′ + δ

x = δx then

m′u = mux

d′fo = dfo

d′so = dso + LTE

where LTE is the length of the telextender unit.

Thus, the matrix for the telextender is:

MTE =

(
x δ(x− 1

x )
0 1

x

)

5.2. Closeup Lens. A closeup lens reduces the minimum object distance, increasing the maximum
magnification. It typically is placed on the front of a lens, much like a filter. We may consider it a thin
lens for most purposes21. Also, we only know its reported diopter so this is the best approximation
we can make. The diopter is just the power φ measured in units of inverse meters. Thus a 1.5
diopter lens has f = 666.66mm, while a 2.9 diopter lens has f = 344.84mm. Using millimeters
for everything and denoting by D the reported diopter of the lens, the associated matrix is

MCL =

(
1 0
−D
1000 1

)

5.3. Extension Tube (or adapter with thickness). An extension tube (or a thick adapter ring)
simply requires a space matrix. For a tube of reported thickness t, this is

MET =

(
1 t
0 1

)

Note that if the element has a narrow diameter and could potentially block light at that stage in the
optical path, then we may need to account for it in our aperture estimate as well.

5.4. Reversed Lens Matrix. For a lens sitting in air, the focal distances on both sides should be the
same. These are measured from the principal planes, which differ for a thick lens but are the same
for a thin lens. It may seem like reversing a lens should have no effect. However, there are several
reasons that this isn’t quite right22:

20We’re okay with a δ dependence, however, because that is specific to the camera.
21Its thickness is nominal, but if the unit takes a lot of space it may be appropriate to apply an Mspace as well.
22We know from section 1.8 that there is an effect.
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(1) The focal play has a different effect. Although we haven’t discussed it yet, the focal play
corresponds to a range of [sa, sb] – the distance from the rear principal plane to the camera
sensor. Let us assume that the focal mechanism involves a parallel motion of the principal
planes. If d1 is the distance from the rear of the lens to the rear principal plane and d2 the
corresponding distance from the front principal plane to the front of the lens (both taken as
positive), when we reverse the lens the effective range becomes [sa−d1+d2, sb−d1+d2].
Using equation 1, and noting that sa and sb represent a range of s1 values, the range of
object distances s2 at which focus can be achieved has changed.

(2) Although we think of the aperture as the diameter of a lens, in practice it is more complex.
For a lens with multiple components23, the aperture depends on the light path (which varies
in width) through many stages. When we reverse the optical path, there is no guarantee of
symmetry. Even if there were, the rear of the lens is designed to pass a narrow cone of light
to the sensor while the front of the lens is designed to admit as much light as possible. For
these reasons, the aperture likely will be significantly reduced. This especially is true of
retrofocal wide-angle lenses.

(3) Physically, the components may not fit together. For example, there may be a protruding
front piece of glass such as is found in ultra wide-angle lenses.

(4) With a zoom lens the considerations regarding focus are compounded.
(5) Autofocus is lost, though that need not concern us here.

As discussed in section 1.8, the entire effect of lens reversal is to swap A and D in the matrix.
Note that this is equivalent to changing mu → 1

mu
(and the same for mo) and dfo ↔ δ for a finite

object distance. Also note that our result can be applied to a matrix representing any component or
combination of components; we need not restrict ourselves to reversing an individual lens.

6. CREATING COMPLEX CONFIGURATIONS

When building a system from a sequence of components there are a number of considerations.

6.1. Focal Play. A real lens has focal play to allow it to achieve focus at a range of object distances.
In the simplest case, a thin lens is moved so that focus can be achieved. We note from equation 1
that by varying s1 we can vary s2. For s1 << s2, a small range of s1 values can lead to a wide range
of s2 values. Of course, in a real lens the focusing mechanism may be far more complex. A simple
way to incorporate focal play is to create 2 matrices, one at each end of the range. Most lenses
have a stated minimum object distance (corresponding to the maximum s1 in our simple example),
and an infinite maximum distance. Any finite maximum distance would be mentioned in the lens
specification24.

It is important to note that even if the individual camera lenses can focus on an infinitely far object,
once we start combining matrices the resulting effective lens may not. Worse, the focal length may
change. This is easy to see even with thin lenses. Suppose we have two thin lenses, each of which
has a certain focal play. Unless the distance between those lenses remains constant, the overall focal
length will change. By focusing the lenses independently we create a zoom lens.

As mentioned, the best way to handle this is to bifurcate every time a lens with focal play is intro-
duced. We then create 2 matrices M1 and M2.

6.2. Zoom Range. A zoom range can be handled in a similar manner to focal play. In this case, we
must construct 4 matrices representing the focal play at each end of the zoom range. Note that many

23And many modern camera lenses have 10 or more components.
24Generally, only macro lenses have finite maximum object distances.
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zoom lenses change size with focal length. As mentioned earlier, this need not concern us as long
as we are consistent in our definition of object distances.

The reported data for a lens may only include dso and mu at a given focal length. Many such
lenses are parfocal, and it is a fair assumption that dso is the same throughout the zoom range unless
otherwise stated. Although less justified, it also is reasonable to treat the maximum magnification
at one end of the range as proportional to that at the other end. For example, for a 70-200mm
lens we may be given mu only at the 200mm end. We then would assume that at the 70mm end
m′u = 70

200 ·mu. Of course, these suppositions could be tested through measurement.

6.3. Managing Ranges. In the process of adding components, we may bifurcate at various points
into 2 matrices for focal play or 4 for a zoom lens. So what is the final matrix? We need to
accommodate all combinations. If we have 2 prime focus lenses and a zoom lens, we would have
2× 2× 4 = 16 final matrices, representing 8 focal ranges. In theory we could achieve any value in
these by careful manual adjustment of zoom and focus knobs. In practice, we really only care about
the extreme values. That is, what can we maximally achieve with a given configuration? It almost
always suffices to determine the maximum magnification, minimum object distance, maximum focal
range, and so on. A simple comparison of the values extracted from each of the final matrices yields
this.

6.4. Tracking Autofocus. One consideration in stacking components is the loss of autofocus. Even
if components pass electronic information through, only one lens can autofocus. This alone may not
be sufficient to achieve focus depending on the other settings. In any configuration with more than
one lens, completely manual focusing is necessary. Reversed components always fail to pass through
electronic information25. Moreover, AF mechanisms are not designed to handle the extra weight
associated with stacked components. They could be damaged, and the use of AF is discouraged
even when available26. To summarize, AF and IS should be turned off on all lenses in a stack.

6.5. Physical Considerations. There are a number of physical considerations as well.

• Just because a configuration is possible in theory doesn’t mean it can be achieved in practice.
Lenses may physically fail to connect or lack sufficient space for reversal. In particular, ultra
wide-angle lenses sometimes have a protruding front piece that makes stacking infeasible.
• Almost all adapter ring types are available except for those with a female bayonet on one

end. Nikon has a version, Canon does not.
• Some cameras (Canon EOS cameras in particular) have firmware that is error prone when

one of their telextenders is used in a non-standard configuration. Unless it detects a proper
AF lens, the software will prevent a photo from being taken.
• Top mounted flashes may be obstructed by a lengthy stack of components. While a ring

flash may help, the cord connecting it to the camera may not be long enough in some cases.
• Torque is an issue. Aside from the difficulty of maneuvering and holding a large configu-

ration, we must be careful of the strain placed on the connection to the camera (as well as
any rings or other connectors along the way). It is best to support the stack of components,
either through the use of bracing rings (such as for a telescope) or by holding it with one
hand. A camera with a long stack should never be placed on a tripod without some addi-
tional support. Ideally, the mount point would be somewhere along the stack as with a large
telephoto lens.

25Actually, at least one vendor produces a special mount connected by a wire that allows a reversed lens to autofocus.
However, it is quite expensive.
26A similar consideration applies to image stabilization. IS should be deactivated when stacking components.
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6.6. Estimating F-stop. As mentioned, reversing a lens reduces the aperture – though by how much
is hard to tell. A reasonable approach is to use the ratio of the diameters of the front and rear pieces
of glass (if the front piece is larger than the rear). The aperture decreases by this factor, and the F-
stop increases by it. For example, consider an F/1.8 lens with a rear piece of glass 10mm in diameter
and a front piece 30mm in diameter. We would reduce the aperture by a factor of 3, corresponding
to a tripling of the F-stop to F/5.4.

While it is a fair bet that intermediate components such as adapter rings or extension tubes will not
affect the already reduced light cone, it is possible that a front-mount piece could. If a component
reduces the probable width of the light cone, then we should reduce the aperture by a corresponding
factor.

Returning to our previous example, let us suppose that the front end of our system consists of a
62mm wide closeup lens (such as the Nikon 5T) on a Canon 70-200 f/4L zoom lens. The aperture
(diameter) drops to 0.92537 of its original value. This means a reduction in effective area of 0.8563.
The F-stop correspondingly increases to 4.3226. Note that for a 1.6X crop sensor, the effective
F-stop (that corresponding to light that hits the sensor) is then 6.916.

6.7. Aberrations. In addition to a reduction in quality with each glass component, aberrations can
accumulate as well. First order optics doesn’t consider these. A typical lens is carefully engineered
to minimize aberrations in one direction. Reversing it may have the opposite effect (or not, depend-
ing on the aberration). Combining lenses may compound or reduce the aberrations. There are some
rules of thumb, but the only way to tell is through trial and error. On the upside, some interesting
and unexpected effects can result.

It also is important to note that many lenses were designed for full-frame cameras. Sometimes this
helps and sometimes it hurts when switching them around.

Last, if the light beam encounters obstructions, the resulting image may be confined to a circular
region or some other subset of the ordinary image rectangle.

7. AN EXAMPLE

Let us consider an example of how to compute the characteristics of a complex system. Suppose
that our system consists of the following components in order from the camera forward:

(1) Canon 1.4X telextender.
(2) Canon 70-200mm F/4L zoom lens with a reported closest object distance of 1.2m and a

maximum magnification of 0.21 at 200mm zoom. The unit is 172mm long, invariant while
focusing or zooming.

(3) Reversing and adapter rings that are 0.5 cm total thickness.
(4) Canon 28mm F/2.8 prime focus lens with a reported 0.3m closest object distance and a

maximum magnification of 0.13. The unit is approximately 62.5mm long at its maximum,
but varies in length while focusing.

We assume that δ = 44mm, as for a Canon EF-S camera.

7.1. Stage 1: 28mm Lens. At the near focus, we use f = 28, d̃so = 300, L = 62.5, andmu = 0.13
(all as reported in the manual) in equation 3 to get:
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M1 =

(
1.4414 59.5451
−0.0357 −0.7816

)

At the far end, we use equation 5 to get:

M2 =

(
1.5714 68.1101
−0.0357 −0.9116

)

As expected, these do not differ much.

Because the lens has been reversed, we use instead:

Mr
1 =

(
−0.7816 59.5451
−0.0357 1.4414

)
Mr

2 =

(
−0.9116 68.1101
−0.0357 1.5714

)

At the end of this stage, our set of matrices is:

M = {Mr
1 ,M

r
2 }

7.2. Stage 2: Adapter Rings. We need a space of 5mm so we use

M3 =

(
1 5
0 1

)

At the end of this stage, our set of matrices is:

M = {M3M
r
1 ,M3M

r
2 }

7.3. Stage 3: 70-200mm Lens. For a zoom lens, we need 4 matrices – two at each end of the focal
range.

On the 200mm end, we use f = 200, d̃so = 1200, L = 172, and mu = 0.21 to get a near focus
matrix

M4 =

(
0.0100 199.6838
−0.0050 0.1581

)

and a far focus matrix

M5 =

(
0.2200 202.2838
−0.0050 −0.0519

)
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On the 70mm end we use f = 70, d̃so = 1200, L = 172, and the scaling assumption of section 6.2
to get mu = 0.0735. The near matrix is:

M6 =

(
0.5551 52.4492
−0.0143 0.4517

)
and the far one is:

M7 =

(
0.6286 53.3592
−0.0143 0.3782

)
At the end of this stage, our set of matrices is

M = {M4M3M
r
1 ,M4M3M

r
2 ,M5M3M

r
1 ,M5M3M

r
2 ,M6M3M

r
1 ,M6M3M

r
2 ,M7M3M

r
1 ,M7M3M

r
2 }

7.4. Stage 4: Telextender. The matrix for the 1.4X telextender is

M8 =

(
1.4 30.1714
0 0.7143

)
as discussed in section 5.1.

The final set of matrices then is

M = {M8M4M3M
r
1 ,M8M4M3M

r
2 ,

M8M5M3M
r
1 ,M8M5M3M

r
2 ,

M8M6M3M
r
1 ,M8M6M3M

r
2 ,

M8M7M3M
r
1 ,M8M7M3M

r
2 }

7.5. System Parameters. In Table 1 we extract the parameters of the effective lens associated with
each of the 8 final matrices using the method in section 3.3.

TABLE 1. System Parameters Associated with the 8 End Matrices

Matrix 28mm Object Zoom Zoom Object f d̃fo mu Measured ≈ mu

M8M6M3M
r
1 Near 70 Near 579.5838 39.5409 3.5174 3.71

M8M7M3M
r
1 Near 70 Far -6683.4278 40.3600 3.5000 3.55

M8M4M3M
r
1 Near 200 Near 1655.9536 39.5409 10.0497 10.09

M8M5M3M
r
1 Near 200 Far -210.3819 40.3600 10.0000 9.65

M8M6M3M
r
2 Far 70 Near 2507.2361 43.1777 3.5040 3.87

M8M7M3M
r
2 Far 70 Far -677.4359 44.0000 3.5000 3.55

M8M4M3M
r
2 Far 200 Near 7163.5317 43.1777 10.0115 10.09

M8M5M3M
r
2 Far 200 Far -191.6610 44.0000 10.0000 9.65

A maximum magnification of around 10X is obtained when we use the 200mm end of the zoom lens
with any combination of focusing. By comparison, the rather expensive Canon MP-E65 macro lens
provides 5x magnification (albeit at a much better F/2.8).
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As a side note, the front piece of glass on the 28mm lens is approximately 2X the diameter of the
rear piece. So, using our rule of thumb we take the F/2.8 and convert it to F/5.6. This is higher than
the F/4 of the 70-200mm lens (which is forward in orientation), so we use it. None of the external
physical elements (such as adapter rings) are expected to reduce aperture in this configuration. The
telextender reduces the aperture by a multiple of 1.4, yielding F/7.84. If we use this with a 1.6X
cropped sensor, the best case F-stop is then F/12.544. We likely will encounter much worse.

While the 200mm zoom produces a uniform image, the 70mm end of the zoom produces a circular
image area. This implies that some sort of obstruction in the light path comes into play in this
configuration.

The empirical magnifications in table 1 were obtained using a cropped frame sensor, while our
computed m’s speak to a full-frame sensor. This is of no consequence. Though the process of
measuring m is dependent on the sensor size, m itself is not.

A few aspects of our results appear suspicious and bear examination:

• The focal lengths look absurd. This is an unfortunate peculiarity of our particular configura-
tion. The formula for thin lenses is 1

f = 1
f1
+ 1
f2
− d
f1f2

with d the distance between them. A
similar formula holds for thick lenses with d the distance between the front principal plane
of the rear lens and the rear principal plane of the front lens. We haven’t included them here,
but the cardinal points happen to fall out so that the forward focal point of the zoom lens is
around 28mm in front of the canister, while the rear focal point of the reversed 28mm lens
is around 25mm inside of its canister. The two focal points almost overlap and d ≈ f1+ f2.
This is the condition under which the combined focal length diverges. This isn’t a problem,
and other parameters are well behaved (in fact,mu and do are remarkably stable). However,
it does mean that the total f is extraordinarily sensitive to initial conditions. A slight change
in the input mu values or the size of the spacer ring will cause dramatic changes in f . As a
result these particular values of f should not be taken too seriously.

• When the zoom lens is at far focus, the computed magnifications are exactly 10 and 3.5.
Also, d̃fo = 44 when both lenses have a far focus. These round numbers are suspicious.
However, we are not in error. In some sense, the configuration behaves like a microscope,
with an objective and an eyepiece. In order to achieve focus on the sensor, light entering the
front of the zoom lens must be from an infinitely distant object – that is, parallel. So, the
light emerging from the reversed 28mm lens must be parallel. However, the 28mm lens in
a forward configuration would focus light from far away to a plane 44mm behind the unit.
So light from an object 44mm in front of the reversed lens would emerge parallel from the
other side. The magnification is the ratio of parallel beam widths. It is not hard to see that
this is the ratio of focal lengths. Accounting for the telextender, at the 70mm end the ratio
is (1.4)·70

28 = 3.5 and at the 200mm end it is (1.4)·200
28 = 10. This also explains the d̃fo = 44

number, precisely where the image sensor would be on the non-reversed 28mm lens.
• The computed object distance d̃fo is independent of the zoom for any given choice of near

or far focusing of the two lenses. This is not a result of our assumption that mu scales with
f for the zoom lens; it holds even if we vary the value. Rather, it probably follows because
the input d̃fo for the 70-200mm lens is the same at both ends of the zoom range.
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8. SUMMARY TABLES

First, our notation (all distances are in mm).

• Matrix:
(
A B
C D

)
.

• δ: Distance from camera sensor to rear of lens. Fixed for a camera family.
• ws: Sensor dimension in the relevant direction (vertical, horizontal, or diagonal).
• L: Length of the lens or stack measured from the seal with the camera to the frontmost

point.
• f : Focal length.
• d̃fo: Minimum distance from front of forward-most component to the object.
• d̃so: Minimum distance from sensor to the object. Assumed to coincide with d̃fo, so d̃so =
d̃fo + L+ δ.

• mu: Upright maximum magnification (assumed at d̃fo).
• mo: Optical maximum magnification (assumed at d̃fo). Related by mo = −mu.
• FOV: Field of view (in same direction as ws).

TABLE 2. Component→Matrix

Item Given A B C D

Lens (do finite) f ,mu, L, d̃fo δ
f −mu

(d̃so − L− δ) ·mu +
δ
mu
− δ·(d̃so−L−δ)

f

− 1
f

(d̃so−L−δ)
f − 1

mu

Lens (do infinite) f , L,mu at any finite d̃so δ
f

f + muδ + δ
mu

−
δ(d̃so−L−δ)

f

− 1
f

(d̃so−L−δ)
f −mu − 1

mu

Lens (Deduced Low End of Zoom
Range)

f , other end’s d̃so and mu,
ratio r =

fthis
fother

δ
f − r ·mu

r ·(d̃so−L−δ)·mu+
δ

r·mu −
δ·(d̃so−L−δ)

f

− 1
f

(d̃so−L−δ)
f − 1

r·mu

Telextender Multiplier x x δ(x− 1
x ) 0 1

x
Extension Tube Thickness t 1 t 0 1

Ring (non-trivial thickness) Thickness t 1 t 0 1

Closeup Lens DiopterD 1 0 −D
1000 1

Reversed Lens ABCD of the Lens D B C A

TABLE 3. Matrix→ Lens

Case f dfo mu FOV

A+ δC 6= 0 − 1
C −

(
B+δD
A+δC

)
−(A+ δC) –

A+ δC = 0 − 1
C ∞ 0 −ws · C
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